Pre-requisite:
Centos 7 Linux updated
Installed Python (see previous posting)
Created a project directory called tensorflow
Default steps are to install Tensorflow 2.x (see tensorflow), but server environments that does not support AVX, they need to install Tensorflow 1.5 (see article and blog). To determine if AVX support is available, run the following command and look for AVX or AVX2.
more /proc/cpuinfo | grep flags
My output shows no AVX.
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx lm constant_tsc rep_good nopl eagerfpu pni monitor ssse3 lahf_lm
Optional:
Configure the project directory for python:
python3 -m venv my_env
Step 1: Install Tensorflow (Or tensorflow-gpu)
cd tensorflow
source my_env/bin/activate
Install Tensorflow application, then print its version
pip install --upgrade tensorflow
Or for server that doesn't have AVX support,
pip install tensorflow==1.15
pip show tensorflow
Step 2: Test Tensorflow install
Create a script file hello.py with following contents;
import tensorflow as tf
hello = tf.constant('Hello, World')
session = tf.Session()
print( session.run(hello) )
Run the script
python hello.py
Step 3: Install Keras
pip install --upgrade scikit-learn pillow
pip install --upgrade keras keras-utils
Or for server that doesn't have AVX support,
pip install --upgrade scikit-learn pillow
pip install keras==2.1.6
pip show keras
Configuration file will be at ~/.keras/keras.conf
{
"floatx": "float32",
"epsilon": 1e-07,
"backend": "tensorflow",
"image_data_format": "channels_last"
}
Test install by editing hello.py
import tensorflow as tf
from tensorflow import keras
hello = tf.constant('Hello, World')
session = tf.Session()
print( session.run(hello) )
No comments:
Post a Comment